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Water-(Ice-) Cherenkov neutrino telescopes have played a pivotal role in the search and discovery
of high-energy astrophysical neutrinos. Experimental collaborations are developing and constructing
next-generation neutrino telescopes with improved optical modules (OMs) and larger geometrical
volumes to increase their efficiency in the multi-TeV energy range and extend their reach to EeV
energies. Although most existing telescopes share similar OM layouts, more layout options should
be explored for next-generation detectors to maximize discovery capability. In this work, we study
a set of layouts at different geometrical volumes and evaluate the signal event selection efficiency
and reconstruction fidelity under both an only trigger-level linear regression algorithm and an offline
Graph Neural Network (GNN) reconstruction. Our methodology and findings serve as first steps
toward an optimized, global network of neutrino telescopes.

I. INTRODUCTION

More than ten years ago, the IceCube Neutrino
Observatory observed high-energy astrophysical neu-
trinos [1], opening a new window into the universe.
Since then, a plethora of neutrino telescopes have
been proposed [2] to follow up IceCube measurements
and to expand its capabilities. Neutrino telescopes [3]
are gigaton-scale neutrino detectors that use natu-
rally occurring media such as glaciers [4, 5], lakes [6],
sea [7–9], interstellar dust [10], or mountains [11–13]
as neutrino targets.

The majority of existing and proposed optical-
Cherenkov neutrino telescopes adhere to a design
with a rich history [14], tracing back to the DU-
MAND project [15]. They consist of several thou-
sands of optical modules (OMs) deployed in liquid or
solid water, which detect Cherenkov light emitted by
relativistic charged particles produced in neutrino in-
teractions. The photon arrival times at the different
detectors are then used to reject background, iden-
tify neutrino events, and infer their direction, energy,
and flavor. This is the type of detectors, which we
will call “neutrino telescopes,” will be the primary
focus of this article, leaving Earth-skimming neutrino
experiment using particle [12], optical [10, 11, 13],
and radio [16] detection beyond our discussion as
their layouts, backgrounds, and detection methods
are very different.

∗ zhutong@berkeley.edu
† miaochenjin@g.harvard.edu
‡ carguelles@fas.harvard.edu

Though a handful of high-energy astrophysical neu-
trino sources has been identified [17, 18] and more re-
cently the galactic plane has been detected in neutri-
nos [19], the field of high-energy neutrino astrophysics
requires detectors that are an order of magnitude
larger to make significant progress [5, 8], and answer
pressing questions in physics and astrophysics [20].
Since next-generation neutrino telescopes are under
development, discussions on optimal detector geome-
try are timely and necessary to increase the neutrino
event quality and expected sample size. Currently,
few results about the optimal configuration of neu-
trino detectors can be found in the literature. A study
conducted by the IceCube-Gen2 collaboration [21]
focuses on maximizing the point source sensitivity of
IceCube-Gen2, a proposed extension of IceCube, by
optimizing the spacing between the newly deployed
strings and associated optical sensors. The results
of this study provide insights into the design and
deployment strategy of IceCube-Gen2, with the ul-
timate goal of achieving a five times better point
source sensitivity compared to the current IceCube
detector. Additionally, recent efforts by P-ONE col-
laborators towards machine-learning approaches to
neutrino telescope optimization are underway [22].

What is the optimal neutrino telescope design is, to
a great extent, a matter of scientific taste. The typical
benchmark is the sensitivity to neutrino point sources,
whose discovery is the primary goal of neutrino tele-
scopes since it allows detailed comparison with source
models often using multi-messenger data [23–26] and
opens opportunities to study very long baseline neu-
trino oscillations [27–31]. However, one could, e.g.,
argue that the measurement of the different neutrino
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FIG. 1. Detector layouts considered in this work. From left to right: hexagonal with 128m interstring separation
(first left), orthogonal with 120m interstring spacing (second left), sun flower with 117m interstring separation (third
left), and Penrose with 112m spacing (fourth left). For the Penrose geometry, the red dot refer to the five added
strings to ensure string number uniformity while keeping quintic rotational symmetry.

flavors is one of the most important goals of neutrino
astrophysics particle physics, since it explores neu-
trino oscillations in unprecedented scales [32]. This
has, in fact, been demonstrated by the current Ice-
Cube array, which has performed some of the most
sensitive tests of Lorentz symmetry [33]. Such a de-
sign will require balancing the capacity to reliably
reconstruct various neutrino flavors, which requires
closer detector spacing and excellent photon time res-
olution, putting this in tension with achieving greater
effective volumes due to increased instrumentation
cost. One could also argue that the most important
goal is to measure the diffuse astrophysical neutrino
spectra [34], since spectral features and comparison
to diffuse gamma-ray emission can yield information
on the source population [35, 36] or allow for novel
tests of new physics [37–40]. Each different scientific
goal will yield a different detector optimization. This
observation is well-aligned with the shift of paradigm
from the now, anachronistic, one detector to rule
them all to a symbiotic ecosystem of neutrino tele-
scopes [41].

In this context, we aim to explore the efficien-
cies and trigger-level resolutions for different next-
generation neutrino telescope geometries when using
ice or water as a medium. Our rationale for studying
the detector response at the trigger level follows from
the discussion above: higher levels of processing are
associated with more specific scientific goals. Im-
provements at the trigger level positively improve all
potential science cases. We will additionally focus on
the signal efficiency, i.e., the capacity to detect neu-
trinos, and leave for future work the incorporation
of background rejection as an optimization criterion.
This is due to computational limitations associated

with the production of background Monte Carlo.
The rest of this article is organized as follows.

In Section II, we will first discuss the simulation
employed in this work. We describe the set of six-
teen detector geometries, the simulation tools, event
distributions, event selection criteria, and effective
areas of each setup. In Section III, we discuss the
two reconstruction methods we use as benchmarks.
The first method is a simple regression applied at the
trigger level, and the second one is a GNN-based ma-
chine learning algorithm applied at events of higher
quality. These two methodologies mimic what is cur-
rently done on neutrino telescopes, where simpler
reconstructions are run on-site and more expensive
ones are applied off-line to the data at various levels
of data selection. Section IV presents results on the
effective areas and the resolutions of the reconstruc-
tions on each candidate detector in this work. Finally,
in Section V, we conclude.

II. DATA SIMULATION

A. Detector Geometry Candidates

For this work, we consider four different geometri-
cal layouts for OM-loaded strings, as shown in Fig-
ure 1. Each detector layout is studied at four detector
geometrical volumes, yielding a total of 16 potential
detector designs. To fairly compare the efficiencies of
not only different geometries but also various instru-
mented volumes, we fix the number of OMs as well
as the number of strings across all 16 layouts. This
implies larger string separation for larger geometrical
volumes and slightly different mean string separations
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for different geometric layouts when they share ap-
proximately the same detector volume. All candidate
configurations consist of 196 strings, each housing 80
OMs with a vertical spacing of 15.6m. While this
depth is comparable with many current-generation
neutrino telescopes, we design our candidates to have
much larger horizontal cross-sectional geometric areas
since next-generation neutrino detectors will likely
look to expand horizontally while being limited verti-
cally by the geography of the detector locations. The
effect of this limited expansion only sideways will
be discussed later in Section IV. For this work, we
consider a telescope in Antarctic ice, where the mean
absorption length for Cherenkov photons is ∼ 250m
for an analogous analysis in water would require scal-
ing down the inter-OM and inter-string distances to
account for the typically shorter water absorption
length, ∼ 60m. We expect our conclusions regarding
the optimal geometry to be unaffected by this rescal-
ing and the angular resolutions to be improved in the
water due to the larger scattering length compared
to the absorption length.

In Figure 1, a top-view of the configurations is
shown where each dot represents a detector string.
The hexagonal grid (a) is a shape similar to the
IceCube main array, but for this work, we simulate a
detector with a perfectly equilateral hexagonal layout,
where the uneven outer layer is due to the restriction
we set on a total number of strings employed. The
orthogonal grid (b) represents the simplest 2D array
configuration. The sunflower shape (c) is inspired
by the baseline design of IceCube-Gen2, which is
expected to mitigate corridor events — background
muons that enter the detector through the string
spacing; the analytical form in polar coordinates can
be found in Ref. [42]. Lastly, we study the Penrose
tilling shape (d) based on the proposed design of
TRIDENT, with an additional five strings placed at
the center to maintain the exact string count while
preserving quintic rotation symmetry.

Configuration
Area (km2)

2.4 5.5 9.7 15.2

Hexagonal (hexa) 128 192 256 320
Orthogonal (ortho) 120 180 240 300
Sunflower (sun) 117 176 234 293
Penrose (pen) 112 168 224 280

TABLE I. D2 in meters for the 16 different geometries
considered in this article. Each line corresponds to a dif-
ferent string configuration, while each column gives the
D2 value. Additionally, the top row shows the common
geometrical area shared between the different configura-
tions.
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FIG. 2. Generation, trigger, and quality level
event selection for the 128-meter-spacing hexago-
nal (hexa128) geometry. Event distributions for other
geometry candidates follow similar patterns.

To investigate which configuration is more efficient,
we demand that the four configurations share the
same geometrical volume. We achieve this by setting
the same geometric area in the x-y plane. Addi-
tionally, we explore these four configurations in four
different scales, corresponding to different geometri-
cal volumes. In each of these geometries, the lattice
points in the x-y plane of different configurations are
proportionally scaled up. Since the string spacing
is not the same between every pair of neighboring
strings, we introduce the following quantity to quan-
tify the horizontal string spacing in these geometries,

D2 :=
1

Nstr

Nstr∑
i=1

1

2

∑
j∈N(i)

r(i, j), (1)

where Nstr is the total number of strings, which we fix
to 196, N(i) are the set of indices of the two-nearest
neighbors of the ith string, and r(i, j) is the euclidean
distance between the ith and jth strings measured
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in the x-y plane. This metric reflects the scale of
the inter-string distance. For example, D2 ∼ 120m
indicates an array with a sparsity level comparable
to the IceCube main array. Next-generation neutrino
telescopes that aim to explore larger energies than
existing detectors but employ a similar amount of
strings will require a sparser distribution, i.e., a larger
D2 value. This is the case of IceCube-Gen2, whose
benchmark design has a 250m inter-string distance
in ice. To facilitate comparison with IceCube and
IceCube-Gen2, we assume all detectors to be placed
in Antarctic ice. Our four comparand scales will
span the spacing from IceCube to above its planned
successor, i.e., the smallest D2 is set to ∼ 120m
and the largest D2 to ∼ 300m. In what follows,
we will denote each of the considered geometries
by their respective configuration shorthand (hexa,
ortho, sun, and pen) and corresponding D2 values,
which can be found on Table I.

B. Event Simulation and Selection

For this work, we use the open-source neutrino
telescope simulation Prometheus [43]. We simulate
muon-neutrino events between 103 to 106 GeV accord-
ing to an unbroken power law with a spectral index
of −1. Events are injected using the ranged injection
mode with a uniform radius in column density with a
cutoff at the top of the atmosphere, while the angular
distribution is uniform in cosine zenith; this results
in more down-going than up-going events, as shown
in Figure 2. We apply two levels of cut to the events,
which we call trigger and quality. At the trigger level,
we apply a coincidence trigger selection criteria simi-
lar to those described in Ref. [44–46]. Specifically, we
require the observation of twelve occurrences within
five milliseconds of coincidence detection in neigh-
boring or next-to-neighboring OMs, where each pair
of coincidental photon deposition must be observed
within a five-millisecond time window. This “trig-
ger level” selection mimics the one used in IceCube,
which selects events that deposit enough amount of
light such that they can be distinguished from the
background and thereby can be evaluated using fast
online reconstruction methods as a first filter. Ad-
ditionally, we also implement a “quality level” that
further discards events that hit too few OMs to leave
a clear morphological signature. The main objective
of this selection is to remove the so-called “corner-
clippers,” where the muon track only passes through
a small fraction of the detector, and to remove events
that are either too spherical or too elongated to be
identified as muon tracks in a morphological classifier.

Specifically, the quality level selection contains three
separate criteria:

NOM > 45,

rC < 0.7×Rdet, (2)
zC < 0.8× Zdet,

2 < Rell < 7

where NOM is the number of OMs that detected light,
rC is the horizontal distance between the average
photon position and the center of our detector, Rdet

is the maximum horizontal distance between strings
and the center of our detector, zC is the vertical
distance between the average photon position and
the center of our detector, Zdet is the half-height of
our detector and Rell is the ratio of the long-axis
length to the short-axis length of the ellipsoid fit to
the photon hits.

Input

Normalize

Output

Update 
Weights

Embedding

Convolution 1
Pool

Concat

Dense * 3

Concat

Dense * 2

Max Min Mean

Convolution 2
Pool

Concat

Dense * 3

Max Min Mean

Convolution 3
Pool

Concat

Dense * 3

Max Min Mean

Convolution 4
Pool

Concat

Dense * 3

Max Min Mean

FIG. 3. Graph Neural Network Architecture De-
sign.

III. RECONSTRUCTION METHOD

We study the potential of angular reconstruction
resolution at both selection stages. At trigger level,
we apply a simple regression fit, which we will denote
as “LineFit,” to the OM photon hits as

min
t0,x⃗0,v⃗

N∑
i=1

||v⃗(ti − t0) + x⃗0 − x⃗i||. (3)

This reconstruction mimics the first-guess reconstruc-
tion used in current detectors and applies to scenarios
of real-time online data processing where only com-
putationally light regressions are used.

At the quality selection level, we use a Graph Neu-
ral Network (GNN) to perform convolution on the
photon hits, similar to Convolutional Neural Network
(CNN), which has recently been used by IceCube [42].
In our method, each event is converted to a graph
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FIG. 4. Effective areas of detector candidates. Left: The trigger-level and quality-level effective area of hexa128.
Right: Relative effective areas are depicted with solid lines for trigger-level and dashed lines for quality-level. We
take the trigger-level effective area of hexa128 as a benchmark to better illustrate the differences of various geometries
at different geometric volumes.

with directional edges. By replacing the conven-
tional convolution with graph convolution, we are
able to encode the irregular OM hit spatial distribu-
tion. Furthermore, we categorize node links (edges)
into different groups to promote efficiency in infor-
mation passing between graph vertices. The details
of data preprocessing and the graph schema design
will be discussed in Appendix A 1. Here, we present
and discuss the neural network architecture design
shown in Figure 3.

The graphs first undergo a normalization layer
to linearly scale all weights and features in a range
of -1 to 1, aligning with the behavior of the acti-
vation function. The embedding layer here applies
a fully-connected layer to the node features, map-
ping them to a higher dimensional vector space. The
weigh-update layers implement an attention mecha-
nism within our network. This mechanism enables
dynamic updates of attention on edges based on cur-
rent attention and the features of nodes at both ends.
The graphs are then processed through four convolu-
tional units. Each unit contains a pooling sector that
extracts information into a matrix form, which is di-
rectly connected to the final dense layers, producing
the final output.

Employing pooling after each convolutional opera-
tion helps the network retain primitive information
and avoid excessive smoothing due to local blurring
in convolutional layers. In the context of angular

reconstruction, the final output is a 3D vector rep-
resenting the incident direction of muon neutrinos.
If the goal is to reconstruct the initial energy of
neutrino events, the output is a scalar value.

This graph neural network reconstruction algo-
rithm, working as a generalized alternative to convo-
lutional approaches, reaches similar performance in
angular resolution: in Appendix A 2, we will show a
benchmark test of the GNN algorithm.

IV. RESULTS

In this section, we will present the effective areas of
the detector candidates at trigger and quality levels,
as well as discuss the performance of both the online-
capable LineFit algorithm on trigger-level events
and the more sophisticated GNN method on quality-
level events for the proposed geometries.

A. Effective Areas

We determine the effective area of each one of
the sixteen geometries by using the LeptonWeighter
package [49] and our simulated events, selected and
computed at the two criteria levels, respectively. The
effective areas are integrated in direction, yielding
an omnidirectional effective area for each of the lev-
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Labs = 250 m for ice and Labs = 60 m for water. Note that the trigger-level selection criteria might be different across
experiments.

els of selection. In the left panel of Figure 4, we
show the effective area of hexa128 as a benchmark.
Figure 4 shows the effective areas of each of the
considered geometries compared to that of hexa128.
Detectors with similar inter-string spacing exhibit
similar effective areas and energy-dependent trends.
At trigger level, D2 ≈ 180m is the optimal for the
in-ice candidates. Quality event criteria filter most
events towards the low-energy end of the spectrum,
cutting more events there as the inter-string distance
increases. However, towards the high-energy end
of the flux, where we expect most of our signal to
be of astrophysical instead of atmospheric origins,
D2 ≈ 240m yields the largest effective area overall
across all detector geometries.

In Fig. 5, we show the geometrical-volume-
normalized effective areas of our detector candi-
dates in comparison with the in-ice neutrino detec-
tor IceCube [47] and the in-water neutrino detector
ARCA [48]. The horizontal axis is the inter-string dis-
tances in our metric D2 normalized by the absorption
distance in the corresponding medium; the vertical
axis is the effective area normalized by geometrical
volume. We have included an analysis of IceCube’s
effective area using simulations in Prometheus, and
the results match the IceCube-reported results.

From the plots, we observe that Aeff/Vgeo is lower
for all our simulated candidates compared with Ice-
Cube and ARCA. This is due to our candidates
expanding only sideways and thereby demonstrating
more pancake-shaped geometries as opposed to the
more cubic-shaped IceCube and ARCA, as previously

discussed in Section II. For example, while our can-
didates with D2 ≈ 120 meters (shown in Figure 5
as the light green cluster of points) have the same
string separations with IceCube and are all 1 km in
depth, they span a geometrical area of 2.4 km2 as
compared to the 1 km2 geometrical area of IceCube.
This results in a reduced contribution from neutrinos
that arrive sideways, implying that the increment
in the effective area does not scale as efficiently as
when both the horizontal and vertical cross-sectional
geometrical area scale up equally. However, as dis-
cussed earlier, the vertical depth is largely restricted
by natural conditions; therefore, a cubic design is
not always feasible when aiming for an expansion in
effective area.

B. Trigger Level LineFit Resolution

In Figure 6, we show the performance of the geom-
etry candidates at the trigger level. For each geome-
try at each geometrical area, we show the expected
number of atmospheric and astrophysical muon neu-
trino events and the mean angular resolution of the
LineFit algorithm. For the atmospheric muon neu-
trino event estimation, we assume the Honda2006
flux implemented in the nuflux package [51]; for the
astrophysical muon neutrino event number estimate,
we assume a flux with normalization and spectral
index taken from the IceCube cascade fit with 6
years of data in [50]. On the one hand, we see that
trigger rates are highest when the geometric area
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FIG. 6. Trigger rates and trigger level line-fit regression angular resolution on the simulated geometries.
Dark and light blue bars show trigger rates of astrophysical and atmospheric neutrinos correspondingly. We used
astrophysical neutrino flux data from IceCube result [50] and atmospheric neutrino flux data from Nuflux [51]. Black
lines denote zenith resolutions of line fit reconstruction.

of the detector reaches Ageo = 5.5 km2 across all
geometrical layouts, corresponding to an inter-string
distance of about 180 meters, corresponding to about
0.75 times the mean absorption length of photons in
ice which is approximately dabs ≈ 240 meters, and
the LineFit algorithm also performs best at this
separation distance. On the other hand, there is no
apparent advantage shown in any particular layout.

C. Quality-level GNN Angular Reconstruction
Resolution

At the quality level, where selected data will be
analyzed with the GNN, we show the energy-binned
expected number of atmospheric and astrophysical
muon neutrino events in the bottom panels of Fig-
ure 7 as well as the angular resolution in the top
panel. As inter-string distance increases and detec-
tor geometrical volume increases, more high-energy
events pass the quality selection criteria, but on the
other end of the spectrum, low-energy events are
not selected if the inter-string distance is too large,
e.g., when stepping into the Ageo ≥ 10 km2 region.

This selects more astrophysical events and eliminates
atmospheric background. Across all string separa-
tion distances, 105 GeV is approximately the energy
threshold where we start selecting more astrophysical
neutrino candidates as the atmospheric background
diminishes, and an inter-string distance of around
180 to 240 meters yields the best rate at and above
this energy threshold while maintaining a decent
reconstruction resolution.

We do not see a significant preference for any par-
ticular geometrical layout pattern, but we should note
that the expected number of events for smaller-sized
detector candidates seems to prefer a more regular
layout in terms of expected event rates. However, at
the trigger level, we do not see such a trend; see Fig-
ure 4. This suggests our quality cut selection criteria,
which depend on the regularity and overall shape of
the event signature morphology, which prefers regu-
lar orthogonal and hexagonal layouts. Therefore, the
specific geometrical layout pattern of strings should
be studied in a combined manner with selection crite-
ria as well as reconstruction methodology, whereas a
simple generalized search we performed yields similar
preferences across all candidates.
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FIG. 7. Angular reconstruction performances on prototypes. Each panel compares the different geometries at
the same detector geometrical area. Each top sub-panel shows the reconstruction resolution, with the top and bottom
20% range shown as the shaded region. The middle and bottom sub-panels show the quality-level astrophysical and
atmospheric neutrino rates as a function of true neutrino energy.

V. SUMMARY AND OUTLOOK

In this article, we have studied sixteen geometries
grouped in four different configurations and, for each,
we have considered four levels of sparsity that span
from current to next-generation neutrino telescope
sizes. We are able to make some observations and
conclusions using our simulations. To start with,
for effective areas and their scaling, we found cubic
designs with similar vertical and horizontal cross-
sectional geometric areas are more "economical" than
pancake-like geometries: the effective area per unit
geometrical volume is larger. However, for next-
generation detectors that aim at very large geometric
areas, such an optimization might become impossible
due to the inability to extend vertical reach. For our
simulated geometries, which are all pancake-shaped,
we moved on to investigate the effects of varying

geometrical layouts and inter-string distances.

In the case of inter-string distance, we found that
D2 ≈ 180 in ice medium yields the best event rate
as well as angular reconstruction resolution across
all geometrical layouts overall, yet for astrophysical
neutrino signals, we would be looking at D2 ≈ 240
for an optimized expected event rate: these corre-
spond roughly to 0.72× and 0.96× dabsorption in ice
medium, respectively, aligning well with our expecta-
tion that larger inter-string distance tunes for higher
energy flux. In the case of geometrical layouts, our
study found no significant overall preference for any
particular string arrangement. Moreover, our results
indicate that the layout should be optimized in combi-
nation with signal selection criteria, as both exert in-
fluence on signal rate; this is not to mention the neces-
sity of studying and optimizing more specified recon-
struction algorithms for the candidates, respectively.
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Furthermore, we should point out that there is no
reason to restrict the geometries of next-generation
telescopes in these sixteen proposed geometries. For
example, a qualitatively different study could explore
uneven string spacing or non-homogeneous vertical
spacing, which is motivated by rejecting incoming
backgrounds.

As noted in the introduction, our results suggest
that the future is not in a one-detector-to-rule-them-
all ecosystem, and detectors should be optimized in-
dividually for their own discovery purposes. Towards
this end, our work serves as a reference for future
designs. We present a generalized method to test
any possible proposals using traditional (LineFit)
and machine learning (GNN) techniques. Combining
the results of effective area and reconstruction perfor-
mance, one can measure the usability of a proposed
neutrino telescope for generic neutrino selection.

As a final note, while we can utilize the method in
this study to find an optimal geometry, the physics
reason why a specific configuration performs better
remains nuanced. This is only the first step of a com-
plete neutrino telescope optimization, as subsequent

steps require specific scientific targets. Interpretation
of a well-trained GNN might reveal the key factors
that influence the reconstruction performance of a
neutrino telescope, offering a new way to understand
neutrino telescopes further and better design next-
generation detectors.
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Appendix A: Graph Neural Network Details

1. Data Preprocessing and Graph Schema

A crucial step in our method is the data preprocessing pipeline, which involves transforming an event into a
heterogeneous graph comprising a single type of node and three types of edges. The quality of this encoding
process greatly influences how information is presented to the downstream network and ultimately affects the
performance of our algorithm.

Initially, each simulation event consists of a set of collected photons with spatial and temporal information.
To retain all possible information, we treat each collected photon as a node in the graph. Neutrino telescope
events can naturally be interpreted as graphs in 4D-Euclidean space, with multiple nodes possessing 4D
features but lacking edges. The sizes of graphs vary from ∼ O(10) to ∼ O(105).

To facilitate message-passing across the graph, an essential task is to establish a scheme for generating
weighted edges between nodes. While using a learnable encoder, as employed in the DYNEDGE algorithm
for low-energy event reconstruction in IceCube[62], initially seems promising, it becomes computationally
infeasible for large graphs. Therefore, we need to design a preprocessing approach based on our knowledge of
neutrino events, connecting highly relevant photons and distant pairs in physical space that reflect global
structures.

The preprocessing algorithm begins by sorting all photons in temporal sequence, from earlier to later.
Since time flows in one direction, we establish directional edges between selected pairs, always pointing from
earlier hits to later ones. This ensures that, during subsequent convolution operations, information flows
along the time direction. Updated features of nodes depend only on themselves and their source neighbors.
A visualization of this pipeline is shown in Figure 1.
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SUPPL. FIG. 1. Schematic diagram of preprocessing pipeline. Side illustration shows messgae passing within
the graph in each convolution step.
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2. Benchmarking Network Performance

In this section, we show, as a benchmark test, the performance of the GNN algorithm on IceCube events
and compare it against a state-of-the-art resolution algorithm to ensure its validity in performing the geometry
evaluations shown previously in this work.
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SUPPL. FIG. 2. Angular reconstruction performance on IceCube geometry.

In Figure 2, the performance of our proposed method is showcased through a comparison with the SSCNN
method[45], revealing compelling results in the context of IceCube simulation events. Here and in the
following results, we use a classic metric for the relevant tasks, the median angular difference, to measure the
performance of angular reconstruction, defined as the 50% quantile of angular differences between true and
predicted vectors.

The GNN algorithm demonstrates good performance in the low-energy range, outperforming the SSCNN
method. However, as the energy surpasses 10 TeV, our method exhibits a slightly diminished performance.
This observation leads us to speculate that the presence of corner clippers, events that are not fully contained
within the detector, may contribute to the upgoing trend at the high-energy end. By applying quality cuts,
we can observe a smoothing effect on the upward trend.
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